Calcium-dependent translocation of s100b is facilitated by neurocalcin delta

Jingyi Zhang, Anuradha Krishnan, Hao Wu, Venkat Venkataraman

Research output: Contribution to journalArticlepeer-review


S100B is a calcium-binding protein that governs calcium-mediated responses in a variety of cells-especially neuronal and glial cells. It is also extensively investigated as a potential biomarker for several disease conditions, especially neurodegenerative ones. In order to establish S100B as a viable pharmaceutical target, it is critical to understand its mechanistic role in signaling pathways and its interacting partners. In this report, we provide evidence to support a calcium-regulated interaction between S100B and the neuronal calcium sensor protein, neurocalcin delta both in vitro and in living cells. Membrane overlay assays were used to test the interaction between purified proteins in vitro and bimolecular fluorescence complementation assays, for interactions in living cells. Added calcium is essential for interaction in vitro; however, in living cells, calcium elevation causes translocation of the NCALD-S100B complex to the membrane-rich, perinuclear trans-Golgi network in COS7 cells, suggesting that the response is independent of specialized structures/molecules found in neuronal/glial cells. Similar results are also observed with hippocalcin, a closely related paralog; however, the interaction appears less robust in vitro. The N-terminal region of NCALD and HPCA appear to be critical for interaction with S100B based on in vitro experiments. The possible physiological significance of this interaction is discussed.

Original languageEnglish (US)
Article numbermolecules26010227
Issue number1
StatePublished - Jan 2021

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Chemistry (miscellaneous)
  • Molecular Medicine
  • Pharmaceutical Science
  • Drug Discovery
  • Physical and Theoretical Chemistry
  • Organic Chemistry


Dive into the research topics of 'Calcium-dependent translocation of s100b is facilitated by neurocalcin delta'. Together they form a unique fingerprint.

Cite this