TY - JOUR
T1 - Automated trackspinning of aligned lignin fibers as precursors of green carbon nanofibers
AU - Jao, Dave
AU - Heinz, Abigail
AU - Stanzione, Joseph F.
AU - Beachley, Vince Z.
N1 - Publisher Copyright:
© 2023 ICE Publishing. All rights reserved.
PY - 2023/5/4
Y1 - 2023/5/4
N2 - At present, most carbon fibers are made from non-renewable polyacrylonitrile. Substantial efforts have been made to replace petroleum-based precursors for carbon fiber production. Interestingly, lignin is a carbon fiber precursor material that is cheap, highly available and sustainable. Submicron-scale lignin-based carbon nanofibers are used in numerous areas, such as electronic devices, batteries, supercapacitors and low-cost, high-performance structural composite materials. Trackspinning (TS) technology offers a way to scale up the versatile, but inefficient contact drawing technique to produce small-diameter lignin fibers from environmentally friendly aqueous solutions. In this study, the effects of TS based on probe drawing of low-concentration lignin nanofibers blended with poly(ethylene oxide) and glycerol in sodium hydroxide (NaOH) solution were investigated. The TS lignin fibers were well aligned and reached diameters as small as 500–1000 nm as the drawing length was increased. Lignin fiber macromolecular alignment was isotropic at low levels of draw, and the dichroic ratio increased from 1 to 2.25 with doubling of the drawing length. The most highly drawn trackspun lignin fibers had a mechanical strength of 3.92 MPa and a Young’s modulus of 2.15 GPa, which were similar to reported values for solvent-electrospun lignin nanofibers. These findings support the potential to utilize TS to produce small-diameter lignin fibers using a simple aqueous solvent approach.
AB - At present, most carbon fibers are made from non-renewable polyacrylonitrile. Substantial efforts have been made to replace petroleum-based precursors for carbon fiber production. Interestingly, lignin is a carbon fiber precursor material that is cheap, highly available and sustainable. Submicron-scale lignin-based carbon nanofibers are used in numerous areas, such as electronic devices, batteries, supercapacitors and low-cost, high-performance structural composite materials. Trackspinning (TS) technology offers a way to scale up the versatile, but inefficient contact drawing technique to produce small-diameter lignin fibers from environmentally friendly aqueous solutions. In this study, the effects of TS based on probe drawing of low-concentration lignin nanofibers blended with poly(ethylene oxide) and glycerol in sodium hydroxide (NaOH) solution were investigated. The TS lignin fibers were well aligned and reached diameters as small as 500–1000 nm as the drawing length was increased. Lignin fiber macromolecular alignment was isotropic at low levels of draw, and the dichroic ratio increased from 1 to 2.25 with doubling of the drawing length. The most highly drawn trackspun lignin fibers had a mechanical strength of 3.92 MPa and a Young’s modulus of 2.15 GPa, which were similar to reported values for solvent-electrospun lignin nanofibers. These findings support the potential to utilize TS to produce small-diameter lignin fibers using a simple aqueous solvent approach.
UR - http://www.scopus.com/inward/record.url?scp=85159631385&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85159631385&partnerID=8YFLogxK
U2 - 10.1680/jgrma.23.00037
DO - 10.1680/jgrma.23.00037
M3 - Article
AN - SCOPUS:85159631385
SN - 2049-1220
VL - 11
SP - 184
EP - 192
JO - Green Materials
JF - Green Materials
IS - 4
ER -