AutoEncoders for Training Compact Deep Learning RF Classifiers for Wireless Protocols

Silvija Kokalj-Filipovic, Rob Miller, Joshua Morman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

We show that compact fully connected (FC) deep learning networks trained to classify wireless protocols using a hierarchy of multiple denoising autoencoders (AEs) outperform reference FC networks trained in a typical way, i.e., with a stochastic gradient based optimization of a given FC architecture. Not only is the complexity of such FC network, measured in number of trainable parameters and scalar multiplications, much lower than the reference FC and residual models, its accuracy also outperforms both models for nearly all tested SNR values (0 dB to 50dB). Such AE-trained networks are suited for in-situ protocol inference performed by simple mobile devices based on noisy signal measurements. Training is based on the data transmitted by real devices, and collected in a controlled environment, and systematically augmented by a policy-based data synthesis process by adding to the signal any subset of impairments commonly seen in a wireless receiver.

Original languageEnglish (US)
Title of host publication2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538665282
DOIs
StatePublished - Jul 2019
Externally publishedYes
Event20th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2019 - Cannes, France
Duration: Jul 2 2019Jul 5 2019

Publication series

NameIEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC
Volume2019-July

Conference

Conference20th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2019
Country/TerritoryFrance
CityCannes
Period7/2/197/5/19

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering
  • Computer Science Applications
  • Information Systems

Fingerprint

Dive into the research topics of 'AutoEncoders for Training Compact Deep Learning RF Classifiers for Wireless Protocols'. Together they form a unique fingerprint.

Cite this