Attenuation of antioxidative capacity enhances reperfusion injury in aged rat myocardium after MI/R

Peitan Liu, Baohuan Xu, Thomas Cavalieri, Carl E. Hock

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

Mortality due to ischemic cardiovascular diseases is significantly higher in elderly than in young adults. Myocardial ischemia-reperfusion (MI/R) can induce oxidative stress and an inflammatory response. We hypothesized that increased vulnerability of aged myocardium to reperfusion injury could be caused by decreased antioxidative capacity, rather than increased oxidant production, after MI/R. Aged (20-mo-old) and young (4-mo-old) male F344BN rats were subjected to 30 min of myocardial ischemia by ligation of the left main coronary artery followed by release of the ligature and 4 h of reperfusion. Four experimental groups were studied: young sham-operated rats, aged sham-operated rats, young rats subjected to MI/R, and aged rats subjected to MI/R. MI/R significantly increased infiltrated leukocyte number and myeloperoxidase (MPO) activity in perinecrotic areas of hearts of young rats compared with aged MI/R rats. These changes in infiltrated leukocyte number and MPO activity were associated with an increase in superoxide generation in perinecrotic areas from hearts of young rats compared with aged rats. Plasma levels of TNF-α and IL-1β were significantly higher in young than in aged MI/R rats. However, plasma 8-hydroxy-2′-deoxyguanosine levels and creatine kinase activity were increased in aged compared with young MI/R rats. Increased reperfusion damage in aged rats was associated with a significant decrease in plasma ratio of GSH to GSSG. Our results suggest that enhanced ischemia-reperfusion injury in aged rat hearts may be related to reduced antioxidative capacity, rather than increased reactive oxygen species production. These findings contribute to a better understanding of effects of aging on oxidative stress and inflammatory responses of the heart after MI/R.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume287
Issue number6 56-6
DOIs
StatePublished - Dec 1 2004

All Science Journal Classification (ASJC) codes

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Fingerprint Dive into the research topics of 'Attenuation of antioxidative capacity enhances reperfusion injury in aged rat myocardium after MI/R'. Together they form a unique fingerprint.

Cite this