Antimicrobial polymers as synthetic mimics of host-defense peptides

Kenichi Kuroda, Gregory A. Caputo

    Research output: Contribution to journalReview articlepeer-review

    124 Scopus citations

    Abstract

    Antibiotic-resistant bacteria 'superbugs' are an emerging threat to public health due to the decrease in effective antibiotics as well as the slowed pace of development of new antibiotics to replace those that become ineffective. The need for new antimicrobial agents is a well-documented issue relating to world health. Tremendous efforts have been given to developing compounds that not only show high efficacy, but also those that are less susceptible to resistance development in the bacteria. However, the development of newer, stronger antibiotics which can overcome these acquired resistances is still a scientific challenge because a new mode of antimicrobial action is likely required. To that end, amphiphilic, cationic polymers have emerged as a promising candidate for further development as an antimicrobial agent with decreased potential for resistance development. These polymers are designed to mimic naturally occurring host-defense antimicrobial peptides which act on bacterial cell walls or membranes. Antimicrobial-peptide mimetic polymers display antibacterial activity against a broad spectrum of bacteria including drug-resistant strains and are less susceptible to resistance development in bacteria. These polymers also showed selective activity to bacteria over mammalian cells. Antimicrobial polymers provide a new molecular framework for chemical modification and adaptation to tune their biological functions. The peptide-mimetic design of antimicrobial polymers will be versatile, generating a new generation of antibiotics toward implementation of polymers in biomedical applications.

    Original languageEnglish (US)
    Pages (from-to)49-66
    Number of pages18
    JournalWiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology
    Volume5
    Issue number1
    DOIs
    StatePublished - Jan 2013

    All Science Journal Classification (ASJC) codes

    • Bioengineering
    • Medicine (miscellaneous)
    • Biomedical Engineering

    Fingerprint

    Dive into the research topics of 'Antimicrobial polymers as synthetic mimics of host-defense peptides'. Together they form a unique fingerprint.

    Cite this