TY - GEN
T1 - Analyzing micro-macro transitional length scale in unidirectional composites
AU - Singh, Nand Kishore
AU - Uddin, Kazi Zahir
AU - Jha, Ratneshwar
AU - Koohbor, Behrad
N1 - Publisher Copyright:
© 2021 36th Technical Conference of the American Society for Composites 2021: Composites Ingenuity Taking on Challenges in Environment-Energy-Economy, ASC 2021. All rights reserved.
PY - 2021
Y1 - 2021
N2 - Understanding the hierarchy in the mechanical behavior of heterogeneous materials requires a systematic characterization of the material response at different length scales, as well as the nature and characteristics of the transitional scales. Characterization of such transitional length scales has been carried out in the past by analytical models that calculate and compare stiffness values at micro and macro scales. The convergence of the material stiffness at the two scales has been used as the criterion for quantification of the so-called transitional length scales. These stiffness calculation approaches are based on the idea of local strain and stress distributions obtained from complex finite element models. Recent advancements in full-field experimental strain measurements have made it possible to identify the transitional length scales in fiber composites based on pure experimental measurements without the requirement of local stress analysis. In this work, we study the validity of such ‘strain-based’ approaches that are used to identify the RVE size in unidirectional fiber composites. Our modeling platform replicates the realistic conditions present in experimental measurements through the randomization of fiber locations and volume fraction within an epoxy matrix.
AB - Understanding the hierarchy in the mechanical behavior of heterogeneous materials requires a systematic characterization of the material response at different length scales, as well as the nature and characteristics of the transitional scales. Characterization of such transitional length scales has been carried out in the past by analytical models that calculate and compare stiffness values at micro and macro scales. The convergence of the material stiffness at the two scales has been used as the criterion for quantification of the so-called transitional length scales. These stiffness calculation approaches are based on the idea of local strain and stress distributions obtained from complex finite element models. Recent advancements in full-field experimental strain measurements have made it possible to identify the transitional length scales in fiber composites based on pure experimental measurements without the requirement of local stress analysis. In this work, we study the validity of such ‘strain-based’ approaches that are used to identify the RVE size in unidirectional fiber composites. Our modeling platform replicates the realistic conditions present in experimental measurements through the randomization of fiber locations and volume fraction within an epoxy matrix.
UR - http://www.scopus.com/inward/record.url?scp=85120498150&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85120498150&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85120498150
T3 - 36th Technical Conference of the American Society for Composites 2021: Composites Ingenuity Taking on Challenges in Environment-Energy-Economy, ASC 2021
SP - 2482
EP - 2489
BT - 36th Technical Conference of the American Society for Composites 2021
A2 - Ochoa, Ozden
PB - DEStech Publications
T2 - 36th Technical Conference of the American Society for Composites 2021: Composites Ingenuity Taking on Challenges in Environment-Energy-Economy, ASC 2021
Y2 - 20 September 2021 through 22 September 2021
ER -