TY - GEN
T1 - Adversarial Filters for Secure Modulation Classification
AU - Berian, Alex
AU - Staab, Kory
AU - Ditzler, Gregory
AU - Bose, Tamal
AU - Tandon, Ravi
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021
Y1 - 2021
N2 - Classification (MC) is the problem of classifying the modulation format of a wireless signal. In the wireless communications pipeline, MC is the first operation performed on the received signal and is critical for reliable decoding. This paper considers the problem of secure MC, where a transmitter (Alice) wants to maximize MC accuracy at a legitimate receiver (Bob) while minimizing MC accuracy at an eavesdropper (Eve). This work introduces novel adversarial learning techniques for secure MC. We present adversarial filters in which Alice uses a carefully designed adversarial filter to mask the transmitted signal, that can maximize MC accuracy at Bob while minimizing MC accuracy at Eve. We present two filtering-based algorithms, namely gradient ascent filter (GAF), and a fast gradient filter method (FGFM), with varying levels of complexity. Our proposed adversarial filtering-based approaches significantly outperform additive adversarial perturbations (used in the traditional machine-learning (ML) community and other prior works on secure MC) and have several other desirable properties. In particular, GAF and FGFM algorithms are a) computational efficient (allow fast decoding at Bob), b) power-efficient (do not require excessive transmit power at Alice); and c) SNR efficient (i.e., perform well even at low SNR values at Bob).
AB - Classification (MC) is the problem of classifying the modulation format of a wireless signal. In the wireless communications pipeline, MC is the first operation performed on the received signal and is critical for reliable decoding. This paper considers the problem of secure MC, where a transmitter (Alice) wants to maximize MC accuracy at a legitimate receiver (Bob) while minimizing MC accuracy at an eavesdropper (Eve). This work introduces novel adversarial learning techniques for secure MC. We present adversarial filters in which Alice uses a carefully designed adversarial filter to mask the transmitted signal, that can maximize MC accuracy at Bob while minimizing MC accuracy at Eve. We present two filtering-based algorithms, namely gradient ascent filter (GAF), and a fast gradient filter method (FGFM), with varying levels of complexity. Our proposed adversarial filtering-based approaches significantly outperform additive adversarial perturbations (used in the traditional machine-learning (ML) community and other prior works on secure MC) and have several other desirable properties. In particular, GAF and FGFM algorithms are a) computational efficient (allow fast decoding at Bob), b) power-efficient (do not require excessive transmit power at Alice); and c) SNR efficient (i.e., perform well even at low SNR values at Bob).
UR - http://www.scopus.com/inward/record.url?scp=85127045470&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85127045470&partnerID=8YFLogxK
U2 - 10.1109/IEEECONF53345.2021.9723329
DO - 10.1109/IEEECONF53345.2021.9723329
M3 - Conference contribution
AN - SCOPUS:85127045470
T3 - Conference Record - Asilomar Conference on Signals, Systems and Computers
SP - 361
EP - 367
BT - 55th Asilomar Conference on Signals, Systems and Computers, ACSSC 2021
A2 - Matthews, Michael B.
PB - IEEE Computer Society
T2 - 55th Asilomar Conference on Signals, Systems and Computers, ACSSC 2021
Y2 - 31 October 2021 through 3 November 2021
ER -