TY - JOUR
T1 - A novel dialkylamino-functionalized chalcone, DML6, inhibits cervical cancer cell proliferation, in vitro, via induction of oxidative stress, intrinsic apoptosis and mitotic catastrophe
AU - Len, Jenna M.
AU - Hussein, Noor
AU - Malla, Saloni
AU - McIntosh, Kyle
AU - Patidar, Rahul
AU - Elangovan, Manivannan
AU - Chandrabose, Karthikeyan
AU - Hari Narayana Moorthy, N. S.
AU - Pandey, Manoj
AU - Raman, Dayanidhi
AU - Trivedi, Piyush
AU - Tiwari, Amit K.
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/7/2
Y1 - 2021/7/2
N2 - In this study, we designed, synthesized and evaluated, in vitro, novel chalcone analogs containing dialkylamino pharmacophores in the cervical cancer cell line, OV2008. The compound, DML6 was selective and significantly decreased the proliferation of OV2008 and HeLa cells in sub-micromolar concentrations, compared to prostate, lung, colon, breast or human embryonic kidney cell line (HEK293). DML6, at 5 µM, arrested the OV2008 cells in the G2 phase. Furthermore, DML6, at 5 µM, increased the levels of reactive oxygen species and induced a collapse in the mitochondrial membrane potential, compared to OV2008 cells incubated with a vehicle. DML6, at 5 µM, induced intrinsic apoptosis by significantly (1) increasing the levels of the pro-apoptotic proteins, Bak and Bax, and (2) decreasing the levels of l the anti-apoptotic protein, Bcl-2, compared to cell incubated with a vehicle. Furthermore, DML6, at 5 and 20 µM, induced the cleavage of caspase-9, followed by subsequent cleavage of the executioner caspases, caspase-3 and caspase-7, which produced OV2008 cell death. Overall, our data suggest that DML6 is an apoptosis-inducing compound that should undergo further evaluation as a potential treatment for cervical cancer.
AB - In this study, we designed, synthesized and evaluated, in vitro, novel chalcone analogs containing dialkylamino pharmacophores in the cervical cancer cell line, OV2008. The compound, DML6 was selective and significantly decreased the proliferation of OV2008 and HeLa cells in sub-micromolar concentrations, compared to prostate, lung, colon, breast or human embryonic kidney cell line (HEK293). DML6, at 5 µM, arrested the OV2008 cells in the G2 phase. Furthermore, DML6, at 5 µM, increased the levels of reactive oxygen species and induced a collapse in the mitochondrial membrane potential, compared to OV2008 cells incubated with a vehicle. DML6, at 5 µM, induced intrinsic apoptosis by significantly (1) increasing the levels of the pro-apoptotic proteins, Bak and Bax, and (2) decreasing the levels of l the anti-apoptotic protein, Bcl-2, compared to cell incubated with a vehicle. Furthermore, DML6, at 5 and 20 µM, induced the cleavage of caspase-9, followed by subsequent cleavage of the executioner caspases, caspase-3 and caspase-7, which produced OV2008 cell death. Overall, our data suggest that DML6 is an apoptosis-inducing compound that should undergo further evaluation as a potential treatment for cervical cancer.
UR - http://www.scopus.com/inward/record.url?scp=85110865295&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85110865295&partnerID=8YFLogxK
U2 - 10.3390/molecules26144214
DO - 10.3390/molecules26144214
M3 - Article
C2 - 34299490
AN - SCOPUS:85110865295
SN - 1420-3049
VL - 26
JO - Molecules
JF - Molecules
IS - 14
M1 - 4214
ER -