A multiscale multispectral approach to digital image correlation for SHM applications

Melvin Mathew, Andrew Ellenberg, Shane Esola, Ivan Bartoli, Antonios Kontsos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A novel technique for digital image correlation (DIC) targeting structural health monitoring (SHM) applications is presented. The method uses multispectral imaging enabling simultaneous data acquisition at variable fields of view (FOV). In general, for a given FOV, appropriate speckle sizes have to be a priori defined, limiting the capability of acquiring viable DIC data from variable working distances or with variable accuracy. Furthermore, straightforward application of multiscale DIC patterns that can be seen in the same wavelength of light can cause measurement errors, forcing the use of larger subset sizes and thus reducing the spatial resolution of the deformation measurements. To overcome such limitations, a patterning technique accounting for camera resolution, distance to target, metric-based optimization and variable wavelength is developed. Specifically, patterns are created for two length scales and applied onto a structure. A black on white speckle pattern for far field measurements in addition to an ultraviolet pattern for near field measurements. The patterns were shown to optimally perform at the a priori calculated working distances. The potential of this method for use in SHM applications is discussed.

Original languageEnglish (US)
Title of host publicationStructural Health Monitoring 2017
Subtitle of host publicationReal-Time Material State Awareness and Data-Driven Safety Assurance - Proceedings of the 11th International Workshop on Structural Health Monitoring, IWSHM 2017
EditorsFu-Kuo Chang, Fotis Kopsaftopoulos
PublisherDEStech Publications
Pages163-170
Number of pages8
ISBN (Electronic)9781605953304
DOIs
StatePublished - 2017
Externally publishedYes
Event11th International Workshop on Structural Health Monitoring 2017: Real-Time Material State Awareness and Data-Driven Safety Assurance, IWSHM 2017 - Stanford, United States
Duration: Sep 12 2017Sep 14 2017

Publication series

NameStructural Health Monitoring 2017: Real-Time Material State Awareness and Data-Driven Safety Assurance - Proceedings of the 11th International Workshop on Structural Health Monitoring, IWSHM 2017
Volume1

Conference

Conference11th International Workshop on Structural Health Monitoring 2017: Real-Time Material State Awareness and Data-Driven Safety Assurance, IWSHM 2017
Country/TerritoryUnited States
CityStanford
Period9/12/179/14/17

All Science Journal Classification (ASJC) codes

  • Health Information Management
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'A multiscale multispectral approach to digital image correlation for SHM applications'. Together they form a unique fingerprint.

Cite this