A highly adhesive and naturally derived sealant

Alexander Assmann, Andrea Vegh, Mohammad Ghasemi-Rad, Sara Bagherifard, George Cheng, Ehsan Shirzaei Sani, Guillermo U. Ruiz-Esparza, Iman Noshadi, Antonio D. Lassaletta, Sidhu Gangadharan, Ali Tamayol, Ali Khademhosseini, Nasim Annabi

Research output: Contribution to journalArticlepeer-review

191 Scopus citations


Conventional surgical techniques to seal and repair defects in highly stressed elastic tissues are insufficient. Therefore, this study aimed to engineer an inexpensive, highly adhesive, biocompatible, and biodegradable sealant based on a modified and naturally derived biopolymer, gelatin methacryloyl (GelMA). We tuned the degree of gelatin modification, prepolymer concentration, photoinitiator concentration, and crosslinking conditions to optimize the physical properties and adhesion of the photocrosslinked GelMA sealants. Following ASTM standard tests that target wound closure strength, shear resistance, and burst pressure, GelMA sealant was shown to exhibit adhesive properties that were superior to clinically used fibrin- and poly(ethylene glycol)-based glues. Chronic in vivo experiments in small as well as translational large animal models proved GelMA to effectively seal large lung leakages without the need for sutures or staples, presenting improved performance as compared to fibrin glue, poly(ethylene glycol) glue and sutures only. Furthermore, high biocompatibility of GelMA sealant was observed, as evidenced by a low inflammatory host response and fast in vivo degradation while allowing for adequate wound healing at the same time. Combining these results with the low costs, ease of synthesis and application of the material, GelMA sealant is envisioned to be commercialized not only as a sealant to stop air leakages, but also as a biocompatible and biodegradable hydrogel to support lung tissue regeneration.

Original languageEnglish (US)
Pages (from-to)115-127
Number of pages13
StatePublished - Sep 2017

All Science Journal Classification (ASJC) codes

  • Mechanics of Materials
  • Ceramics and Composites
  • Bioengineering
  • Biophysics
  • Biomaterials


Dive into the research topics of 'A highly adhesive and naturally derived sealant'. Together they form a unique fingerprint.

Cite this