TY - GEN
T1 - A bridge between finite element and shear lag analyses for fiber pull out
AU - Avery, G.
AU - Riddell, W. T.
N1 - Publisher Copyright:
Copyright © 2015 by DEStech Publications, Inc. and American Society for Composites. All rights reserved.
PY - 2015
Y1 - 2015
N2 - The strength of fiber-reinforced composites is often dependent on the strength of the fiber-matrix interface bond. Thermal, chemical, and other means have been used to modify the surface of fibers, resulting in increased fiber-matrix interface bond strength. One potential mechanism for improving interfacial strength is through increased surface roughness. It is desirable to develop physics-based models capable of predicting the effect of surface treatment on interfacial bond strength. It is anticipated that experimental, numerical, and analytical efforts will be needed to contribute toward this endeavor. A shear-lag approach has been used to model the transfer of load from fiber to matrix in fiber pull out, microbond, and axisymmetric macrobond tests. However, the shear lag parameter, β, must be fitted to experimental results to use this approach. Finite element analyses could be useful in interpreting experimental results, and predicting the effect of surface roughness on load transfer. However, shear lag models do not capture the singularity that is present along the fiber-matrix interface at the free surface of the matrix, meaning that finite element and shear lag analyses do not agree near the location that fiber-matrix debond is most likely to begin. In this paper, a numerical approach is presented that allows the shear lag parameter, β, to be extracted from finite element results. This allows a bridge between numerical and analytical approaches that does not currently exist. Axisymmetric finite element analyses of fiber pull out and axisymmetric macrobond configurations are discussed in light of this approach. The effect of the different boundary conditions in these two test configurations are considered for a range of ratios for matrix and fiber Young's moduli. It is anticipated that this approach will be essential in future research efforts to simulate the effect of fiber surface texture on pull out strength.
AB - The strength of fiber-reinforced composites is often dependent on the strength of the fiber-matrix interface bond. Thermal, chemical, and other means have been used to modify the surface of fibers, resulting in increased fiber-matrix interface bond strength. One potential mechanism for improving interfacial strength is through increased surface roughness. It is desirable to develop physics-based models capable of predicting the effect of surface treatment on interfacial bond strength. It is anticipated that experimental, numerical, and analytical efforts will be needed to contribute toward this endeavor. A shear-lag approach has been used to model the transfer of load from fiber to matrix in fiber pull out, microbond, and axisymmetric macrobond tests. However, the shear lag parameter, β, must be fitted to experimental results to use this approach. Finite element analyses could be useful in interpreting experimental results, and predicting the effect of surface roughness on load transfer. However, shear lag models do not capture the singularity that is present along the fiber-matrix interface at the free surface of the matrix, meaning that finite element and shear lag analyses do not agree near the location that fiber-matrix debond is most likely to begin. In this paper, a numerical approach is presented that allows the shear lag parameter, β, to be extracted from finite element results. This allows a bridge between numerical and analytical approaches that does not currently exist. Axisymmetric finite element analyses of fiber pull out and axisymmetric macrobond configurations are discussed in light of this approach. The effect of the different boundary conditions in these two test configurations are considered for a range of ratios for matrix and fiber Young's moduli. It is anticipated that this approach will be essential in future research efforts to simulate the effect of fiber surface texture on pull out strength.
UR - http://www.scopus.com/inward/record.url?scp=84966668115&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84966668115&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84966668115
T3 - Proceedings of the American Society for Composites - 30th Technical Conference, ACS 2015
BT - Proceedings of the American Society for Composites - 30th Technical Conference, ACS 2015
A2 - Xiao, Xinran
A2 - Liu, Dahsin
A2 - Loos, Alfred
PB - DEStech Publications
T2 - 30th Annual Technical Conference of the American Society for Composites, ASC 2015
Y2 - 28 September 2015 through 30 September 2015
ER -