A 3-legged parallel robot for long bone fracture alignment

Mohammad H. Abedinnasab, Farzam Farahmand, Jaime Gallardo-Alvarado

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

The reduction of long bone fractures is traditionally an invasive procedure with drawbacks of intense force, soft tissue damage, and, both, rotational and longitudinal malalignment. To combat these drawbacks, we applied a novel, wide open, threelegged, 6-DOF parallel robot, to the current surgical procedure. This platform will balance the accuracy, payload, and workspace for the surgeon, resulting in more efficient, successful surgeries. The experimental tests on a phantom reveal that the mechanism is well capable of applying the desired reduction steps against the large muscular payloads with high accuracy.

Original languageEnglish (US)
Title of host publication19th International Conference on Advanced Vehicle Technologies; 14th International Conference on Design Education; 10th Frontiers in Biomedical Devices
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791858158
DOIs
StatePublished - 2017
EventASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2017 - Cleveland, United States
Duration: Aug 6 2017Aug 9 2017

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume3

Other

OtherASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2017
Country/TerritoryUnited States
CityCleveland
Period8/6/178/9/17

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'A 3-legged parallel robot for long bone fracture alignment'. Together they form a unique fingerprint.

Cite this